Engineering Software

Copyright © 1996

P.O. Box 2134 Kensington, MD 20891 Phone: (301) 919-9670 E-Mail: info@engineering-4e.com http://www.engineering-4e.com

Basic Engineering Equations

Here are some of the basic engineering equations related to the conservation of mass, momentum and energy and energy conversion systems.

Basic Conservation Equations

Continuity Equation $m = \rho vA [kg/s]$

Momentum Equation $F = (vm + pA)_{out - in} [N]$

Energy Equation Q - W = $((h + v^2/2 + gh)m)_{out - in}$ [kW]

State Equation for Ideal Gas pv = RT [kJ/kg]

Perfect Gas $c_p = constant [kJ/kg*K]$

> Kappa $\chi = c_p/c_v [/]$

Isentropic Compression $T_2/T_1 = (p_2/p_1)^{(\chi-1)/\chi} [/]$

$$T_2/T_1 = (V_1/V_2)^{(\chi-1)} [/]$$

$$p_2/p_1 = (V_1/V_2)^{\chi} [/]$$

Flame Temperature [K] $h_{reactants} = h_{products} [kJ/kg]$

Isentropic Expansion $T_1/T_2 = (p_1/p_2)^{(\chi-1)/\chi} [/]$

$$T_1/T_2 = (V_2/V_1)^{(\chi-1)} [/]$$

$$p_1/p_2 = (V_2/V_1)^{\chi} [/]$$

Sonic Velocity $v_s = (\chi RT)^{1/2} [m/s]$

> Mach Number $M = v/v_s$ [/]

Thrust Thrust = $vm + (p - p_{atm})A[N]$

Isentropic Flow $T_t/T = (1 + M^2(\chi - 1)/2) [/]$

$$p_t/p = (1 + M^2(\chi - 1)/2)^{\chi/(\chi - 1)}$$
 [/]

 $h_t = (h + v^2/2) [kJ/kg]$

 $T_t = (T + v^2/(2c_p)) [K]$

Cycle Efficiency $\eta = W_{net}/Q$ [/]

Heat Rate HR = $(1/\eta)3,412$ [Btu/kWhr]

Request for Free Information

To get a free evaluation copy of the **Engineering Software** product line, place an order, find out more about how you can profit or benefit from the product line, visit the **Engineering Software** web site at: http://www.engineering-4e.com or send an e-mail to info@engineering-4e.com or call (301) 919-9670.