Engineering Software

Copyright © 1996

P.O. Box 2134

Kensington, MD 20891
Phone: (301) 919-9670
E-Mail: info@engineering-4e.com
http://www.engineering-4e.com

Erıgirneerirıg Aシショurupijors

When dealing with energy conversion and considering ideal（isentropic）operation and the working fluid is air， the following assumptions are valid：

Compressible Flow

Single species consideration
Basic equations hold（continuity，momentum and energy equations）
Specific heat is constant

Eョasic Engine=ring Efuations

Basic Conservation Equations

Continuity Equation $\mathrm{m}=\rho \mathrm{vA}[\mathrm{kg} / \mathrm{s}]$

Momentum Equation
F = (vm +pA$)_{\text {out }- \text { in }}[\mathrm{N}]$
Energy Equation

$$
q-w=\left(h+v^{2} / 2+g h\right)_{\text {out }- \text { in }}[k J / k g]
$$

EEsic Engineering Ecuations

Ideal Gas State Equation $\mathrm{pv}=\mathrm{RT}[\mathrm{kJ} / \mathrm{kg}]$

Perfect Gas $\mathrm{c}_{\mathrm{p}}=$ constant $\left[\mathrm{kJ} / \mathrm{kg}{ }^{*} \mathrm{~K}\right]$

Kappa

$$
X=c_{p} / c_{v}[/]
$$

For air: $X=1.4[/], R=0.2867\left[\mathrm{~kJ} / \mathrm{kg}{ }^{*} \mathrm{~K}\right]$ and

$$
c_{p}=1.004\left[\mathrm{~kJ} / \mathrm{kg}^{*} \mathrm{~K}\right]
$$

Compressitole Flow Engineering Eguations

Sonic Velocity

$$
v_{s}=(X R T)^{1 / 2}[\mathrm{~m} / \mathrm{s}]
$$

Mach Number

$$
\mathrm{M}=\mathrm{v} / \mathrm{v}_{\mathrm{s}}[/]
$$

$$
\begin{gathered}
\text { Energy Equation } \\
\mathrm{q}-\mathrm{w}=\left(\mathrm{h}+\mathrm{v}^{2} / 2+\mathrm{gh}\right)_{\text {out }- \text { in }}[\mathrm{kJ} / \mathrm{kg}]
\end{gathered}
$$

When $\mathrm{q}=0$ and $\mathrm{w}=0$ (for isentropic expansion), it follows:

$$
\left(h+v^{2} / 2+g h\right)_{\text {in }}=\left(h+v^{2} / 2+g h\right)_{\text {out }}
$$

Furthermore,

in = Total and/or Stagnation Condition (t) and $\mathrm{v}=0$
out $=$ Static Condition
Also, gh = 0

Compressitole Flow Engineering Eguations

$$
\begin{gathered}
\text { Therefore, } \\
h_{t}=h+v^{2} / 2 \\
c_{p} T_{t}=c_{p} T+v^{2} / 2 \\
T_{t}=T+v^{2} /\left(c_{p} 2\right) \\
T_{t}=T\left(1+v^{2} /\left(T c_{p} 2\right)\right) \\
T_{t} / T=\left(1+v^{2} /\left(T_{p} 2\right)\right) \\
c_{p}-c_{v}=R \\
X=c_{p} / c_{v}
\end{gathered}
$$

Compressible Flow Engineering Eguations

$$
\begin{gathered}
1-c_{v} / c_{p}=R / c_{p} \\
(X-1) / X=R / c_{p} \\
(X-1) /(X R)=1 / c_{p} \\
\text { Hence, } \\
T_{t} / T=\left(1+v^{2} /\left(T_{p} 2\right)\right) \\
T_{t} / T=\left(1+\left((X-1) v^{2}\right) /(T X R 2)\right) \\
v_{s}{ }^{2}=X R T
\end{gathered}
$$

Compressionle Flow Engineering Eguations

$$
\begin{gathered}
T_{t} / T=\left(1+\left((X-1) v^{2}\right) /\left(v_{s}^{2} 2\right)\right) \\
M^{2}=\left(v / v_{s}\right)^{2} \\
T_{t} / T=\left(1+M^{2}(X-1) / 2\right)
\end{gathered}
$$

Compressitole Flow Engineering Eguations

Knowing the following:

$$
\begin{gathered}
T_{t} / T=\left(p_{t} / p\right)^{(X-1) / X} \\
p_{t} / p=\left(T_{t} / T\right) X(X-1) \\
p_{t} / p=\left(1+M^{2}(X-1) / 2\right)^{X^{\prime} /(X-1)}
\end{gathered}
$$

Compressiogle Flow Engineering Eguations

Isentropic Flow

$$
\begin{aligned}
T_{t} / T & =\left(1+M^{2}(X-1) / 2\right)[/] \\
p_{t} / \mathrm{p}= & \left(1+M^{2}(X-1) / 2\right)^{X /}(X-1)[/] \\
h_{t} & =\left(h+v^{2} / 2\right)[k J / k g] \\
T_{t} & =\left(T+v^{2} /\left(2 c_{p}\right)\right)[K]
\end{aligned}
$$

Thrust $=v m+\left(p-p_{a}\right) A[N]$

